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Abstract: An increasing number of commodity clusters are connected to each other by public networks, which have
become a potential threat to security sensitive parallel applications running on the clusters. To address this security issue,
we developed a Message Passing Interface (MPI) implementation to preserve confidentiality of messages communicated
among nodes of clusters in an unsecured network. We focus on MPI rather than other protocols, because MPI is one of the
most popular communication protocols for parallel computing on clusters.

Our MPI implementation—called ES-MPICH2—was built based on MPICH2 developed by the Argonne National
Laboratory. Like MPICH2, ES-MPICH2 aims at supporting a large variety of computation and communication platforms
like commodity clusters and high-speed networks. We integrated encryption and decryption algorithms into the MPICH2
library with the standard MPI interface and; thus, data confidentiality of MPI applications can be readily preserved without
a need to change the source codes of the MPI applications. The proposed work focuses on MPI rather than other protocols
because MPI is one of the most popular communication protocols on distributed clusters.

Here AES, Triple DES and ECC algorithm is used for encryption/decryption algorithm is used for key
management which is then integrated into Message Passing Interface Chameleon version 2 (MPICH2) with standard MPI
interface that becomes ES-MPICH2. This ES-MPICH2 is a new MPI that provides security and authentication for
distributed clusters which is unified into cryptographic and mathematical concept. The major desire of ES-MPICH2 is
supporting a large variety of computation and communication platforms.
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I. INTRODUCTION
In unclustered networks, the data encryption for large

scale distributed clusters becomes a non trivial and
challenging problem, due to the open accessible nature of
the internet. Information processed in a distributed cluster
is shared among a group of distributed processes or users
by virtue of Message Passing protocols (e.g. Message
Passing Interface -MPI) running on the internet. To
combine the portability with high performance the ES-
MPICH2 with the original MPICH2 version is used for
incurring the overhead by the confidentiality services.
Due to high performance clusters, the security overhead
can be reduced in ES-MPICH2. To preserve the data
confidentiality, the encryption algorithm can be integrated
into the MPICH2 library.

Due to the fast development of the internet, an
increasing number of universities and companies are
connecting their cluster computing systems to public
networks to provide high accessibility. Those clusters
linking to the internet can be accessed by anyone from
anywhere. For example, computing nodes in a distributed

cluster system proposed by Sun Microsystems are
geographically deployed in various computing sites.
Information processed in a distributed cluster is shared
among a cluster of distributed tasks or users by the virtue
of message passing protocols (e.g., message passing
interface—MPI) or confidential data transmitted to and
from cluster computing nodes.

When two entities are communicating with each
other, and they do not want a third party to listen to their
communication, then they want to pass on their message
in such a way that nobody else could understand their
message. This is known as communicating in a secure
manner or secure communication. Fig 1 illustrates about
the secure communication among distributed clusters
[10].

Fig. 1. MPI communication that includes all of the MPI processes with
secure algorithms.
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Preserving data confidentiality in a message
passing environment over an untrusted network is critical
for a wide spectrum of security-aware MPI applications,
because unauthorized access to the security-sensitive
messages by untrusted processes can lead to serious
security breaches. Hence, it is imperative to protect
confidentiality of messages exchanged among a group of
trusted processes. It is a nontrivial and challenging
problem to offer confidentiality services for large-scale
distributed clusters, because there is an open accessible
nature of the open networks. To address this issue, we
enhanced the security of the MPI protocol by encrypting
and decrypting messages sent and received among
computing nodes.

In this study, we focus on MPI rather than other
protocols, because MPI is one of the most popular
communication protocols for cluster computing
environments. Numerous scientific and commercial
applications running on clusters were developed using the
MPI protocol. Among a variety of MPI implementations,
we picked MPICH2 developed by the Argonne National
Laboratory. The design goal of MPICH2—a widely used
MPI implementation— is to combine portability with
high performance [14]. We integrated encryption
algorithms into the MPICH2 library. Thus, data
confidentiality of MPI applications can be readily
preserved without a need to change the source codes of
the MPI applications. Data communications of a
conventional MPI program can be secured without
converting the program into the corresponding secure
version, since we provide a security enhanced MPI-
library with the standard MPI interface.

It is a nontrivial and challenging problem to
offer confidentiality services for large-scale distributed
clusters, because there is an open accessible nature of the
open networks. To address this issue, we enhanced the
security of the MPI protocol by encrypting and decrypting
messages sent and received among computing nodes.
Numerous scientific and commercial applications running
on clusters were developed using the MPI protocol.
Among a variety of MPI implementations, we picked
MPICH2 developed by the Argonne National Laboratory.
The design goal of MPICH2—a widely used MPI
implementation— is to combine portability with high
performance. We integrated encryption algorithms into
the MPICH2 library. Thus, data confidentiality of MPI
applications can be readily preserved without a need to
change the source codes of the MPI applications
A. Possible Approaches
There are three possible approaches to improving security
of MPI applications. In first approach, application
programmers can add source code to address the issue of

message confidentiality. For example, the programmers
may rely on external libraries (e.g., SEAL [3] and Nexus
[2]) to implement secure applications. Such an
application-level security approach not only makes the
MPI applications error prone, but also reduces the
portability and flexibility of the MPI applications. In the
second approach, the MPI interface can be extended in the
way that new security-aware APIs are designed and
implemented .This MPI-interface-level solution enables
programmers to write secure MPI applications with
minimal changes to the interface. Although the second
approach is better than the first one, this MPI-interface-
level solution typically requires an extra code to deal with
data confidentiality. The third approach—a channel-level
solution—is proposed in this study to address the
drawbacks of the above two approaches. Our channel-
level solution aims at providing message confidentiality
in a communication channel that implements the Channel
Interface 3 (CH3) in MPICH2
B. Contributions
The three major contributions of this study includes
 We implemented a standard MPI mechanism

called ES-MPICH2 to offer data confidentiality
for secure network communications in message
passing environments. Our proposed security
technique incorporated in the MPICH2 library
can be very useful for protecting data transmitted
in open networks like the Internet.

 The ES-MPICH2 mechanism allows application
programmers to easily write secure MPI
applications without additional code for data-
confidentiality protection. We seek a channel-
level solution in which encryption and
decryption functions are included into the
MPICH2 library. Our ES-MPICH2 maintains a
standard MPI interface to exchange messages
while preserving data confidentiality.

 The implemented ES-MPICH2 framework
provides Secured configuration file that enables
application programmers to selectively choose
any cryptographic algorithm and symmetric-key
in ES-MPICH2. This feature makes it possible
for programmers to easily and fully control the
security services incorporated in the MPICHI2
library. To demonstrate this feature, we
implemented the AES, 3DES and ECC
algorithms in ESMPICH2. We also show in this
paper how to add other cryptographic algorithms
into the ES-MPICH2 framework.
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II. MPICH2 OVERVIEW
MPICH—one of the most popular MPI
implementations—- were developed at the Argonne
National Laboratory [4]. The early MPICH version
supports the MPI-1 standard. MPICH2—a successor of
MPICH—not only provides support for the MPI-1
standard, but also facilitates the new MPI-2 standard,
which specifies functionalities like one-sided
communication, dynamic process management, and MPI
I/O [13]. Compared with the implementation of MPICH,
MPICH2 was completely redesigned and developed to
achieve high performance, maximum flexibility, and good
portability.

Fig. 2. Hierarchical Structure of MPICH2 [13].
Fig. 2 shows the hierarchical structure of the

MPICH2 implementation, where there are four distinct
layers of interfaces to make the MPICH2 design portable
and flexible. The four layers, from top to bottom, are the
message passing interface 2 (MPI-2), the abstract device
interface (ADI3), the CH3, and the low-level interface.
ADI3—the third generation of the abstract device
interface— in the hierarchical structure (see Fig. 2) allows
MPICH2 to be easily ported from one platform to
another. Since it is nontrivial to implement ADI3 as a
full-featured abstract device interface with many
functions, the CH3 layer simply implements a dozen
functions in ADI3 [1].

As shown in Fig. 3, the TCP socket Channel, the
shared memory access (SHMEM) channel, and the
remote direct memory access (RDMA) channel are all
implemented in the layer of CH3 to facilitate the ease of
porting MPICH2 on various platforms. Note that each one
of the aforementioned  channels implements the CH3
interface for a corresponding communication architecture
like TCP sockets, SHMEM, and RDMA. Unlike an ADI3
device, a channel is easy to implement since one only has
to implement a dozen functions relevant for with the
channel interface.

To address the issues of message snooping in the
message passing environments on clusters, we seek to
implement a standard MPI mechanism with
confidentiality services to counter snooping threats in
MPI programs running on a cluster connected an
unsecured network. More specifically, we aim to

implement cryptographic algorithms in the TCP socket
channel in the CH3 layer of MPICH2 (see Fig. 3).

Fig. 3. Message passing implementation structure in MPICH2.

III. Related Work

Due to an increasing number of commodity
clusters connected to each other by public networks, the
encrypting and decrypting messages sent and received
among computing nodes are not efficient and the data
confidentiality is not readily preserved. So to implement
secure applications, the programmers may rely on
external libraries (e.g. SEAL [3] and NEXUX [2]).There
is a minimal changes to the interface to write the secure
MPI applications and the calculation time and memory
needs for larger key sizes are more in the popular
asymmetric cryptosystems like RSA.

IV. PROPOSED SYSTEM

To offer data confidentiality for secure network
communications in message passing environments, a
standard MPI mechanism called ES-MPICH2 was
introduced. This proposed security technique incorporated
in the MPICH2 library can be very useful for protecting
data transmitted in open networks like the Internet. The
ES- MPICH2 mechanism allows application programmers
to easily write secure MPI applications without any
additional code for data-confidentiality protection. We
seek a channel-level solution in which encryption and
decryption functions are included into the MPICH2
library. Thus the ES-MPICH2 maintains a standard MPI
interface to exchange messages while preserving data
confidentiality. ES-MPICH2 framework provides a
secured configuration file that enables application
programmers to selectively choose any cryptographic
algorithm. It provides easy and full control of security
services. AES, 3DES and ECC algorithms are used in
ESMPICH2.
A. Scope of ES- MPICH2

Confidentiality, integrity, availability, and
authentication are four important security issues to be
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addressed in clusters connected by an unsecured public
network. Rather than addressing all the security aspects,
we pay particular attention to confidentiality services for
messages passed among computing nodes in an unsecured
cluster.

Although preserving confidentiality is our
primary concern, an integrity checking service can be
readily incorporated into our security framework by
applying a public-key cryptography scheme. In an MPI
framework equipped with the public-key scheme, sending
nodes can encode messages using their private keys. In
the message receiving procedure, any nodes can use
public keys corresponding to the private keys to decode
messages. If one alters the messages, the ciphertext
cannot be deciphered correctly using public keys
corresponding to the private keys. Thus, the receiving
nodes can perform message integrity check without the
secure exchange of secret keys.
B. Design structure of ES- MPICH2

One of the objectives in MPICH2 design is
portability. To facilitate porting MPICH2 from one
platform to another, MPICH2 uses ADI3 (the third
generation of the Abstract Device Interface) to provide a
portability layer. ADI3 is a full-featured abstract device
interface and has many functions, so it is not a trivial task
to implement all of them. To reduce the porting effort,
MPICH2 introduces the CH3 interface. CH3 is a layer
that implements the ADI3 functions, and provides an
interface consisting of only a dozen functions. A
―channelǁ implements the CH3 interface. Channels exist
for different communication architectures such as TCP
sockets, SHMEM, etc. Because there are only a dozen
functions associated with each channel interface, it is
easier to implement a channel than the ADI3 device. The
hierarchical structure of MPICH2, as shown in Figure1,
gives much flexibility to implementers. The three
interfaces (ADI3, CH3, and RDMA Channel Interface)
provide different trade-offs between communication
performance and ease of porting. As a successor of
MPICH, MPICH2 [9] aims to support not only the MPI-1
standard, but also functionalities such as dynamic process
management, one-sided communication and MPI I/O,
which are specified in the MPI-2 standard.

Fig 4. ES- MPICH2 implementation structure
However, MPICH2 is not merely MPICH with MPI-2
extensions. It is based on a completely new design,
aiming to provide more performance, flexibility and
portability than the original MPICH2. The future
development for MPICH, including those necessary to
accommodate extensions to the MPI Standard now being
contemplated by the MPI Forum.

The process of creating a standard to enable
portability of message-passing applications codes began
at a workshop on Message Passing Standardization and
the Message Passing Interface (MPI). Confidentiality,
integrity, availability, and authentication are four
important security issues to be addressed in clusters
connected by an unsecured public network. Rather than
addressing all the security aspects, we pay particular
attention to confidentiality services for messages passed
among computing nodes in an unsecured cluster.
Although preserving confidentiality is our primary
concern, an integrity checking service can be readily
incorporated into our security framework by applying a
public-key cryptography scheme.

In the implementation of ES-MPICH2 comprises
of three main modules such as:
--Secure Login
--Key Generation
--Communication
A. Secure Login

The server verifies the authentication of the user
and allows him to login his/her page. Thus, MPI
application is developed to preserve authentication which
is to be addressed in clusters connected by an unsecured
network.
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B. Key Generation
Based on the number of users (communicate

with each other) the interface of the server generate
symmetric key and provide to the authorized clients in the
clusters. It also provides rekeying system. Fig. 5 presents
the key generation infrastructure in ES-MPICH2.

Fig. 5. Message passing implementation structure in ES-MPICH2 key
generation details.

C. Communication
Before a message is delivered through the server,

data contained in the message are encrypted by a
cryptographic algorithms.
1. Key Agreement

In Key Agreement, the Diffie–Hellman key
exchange algorithm is used that establishes a shared
secret that can be used for secret communications by
exchanging data over a public network. Figure 6 presents
the key agreement infrastructure using Arithmetic XOR
operations (e.g. 1 0→ 1). The terminal A and terminal B
can share their secret keys by using hash functions. The
positive response (e.g. 1) can be saved in the source side.
The positive acknowledgement can be stored in the
destination side. Thus the secret communications is done
by accepting the secret key in the destination side and if it
is matched send the acknowledgement to the destination
side.
2. Advanced Encryption Standard

AES is based on a design principle known as a
substitution-permutation network, and is fast in both
software and hardware. Unlike its predecessor DES, AES
does not use a Feistel network. AES is a variant of
Rijndael which has a fixed block size of 128 bits, and a
key size of 128, 192, or 256 bits. By contrast, the Rijndael
specification per se is specified with block and key sizes
that may be any multiple of 32 bits, both with a minimum
of 128 and a maximum of 256 bits.
AES operates on a 4×4 column-major order matrix of
bytes, termed the state, although some versions of

Rijndael have a larger block size and have additional
columns in the state. Most AES calculations are done in a
special finite field.

Fig 6. Key Agreement using XOR operations for sharing secret keys.
The key size used for an AES cipher specifies

the number of repetitions of transformation rounds that
convert the input, called the plaintext, into the final
output, called the cipher text. The numbers of cycles of
repetition are as follows:
 10 cycles of repetition for 128 bit keys.
 12 cycles of repetition for 192 bit keys.
 14 cycles of repetition for 256 bit keys.
Each round consists of several processing steps,

including one that depends on the encryption key itself. A
set of reverse rounds are applied to transform cipher text
back into the original plaintext using the same encryption
key. Figure 7 depicts the internal operations of Advanced
Encryption Standard in which each round consists of four
special functions. They are
 Byte Substitution
 Permutation
 Arithmetic operations over a finite field
 XOR with a key
These transformations are applied to a 128-bit input

block in a certain sequence to perform an AES encryption
or decryption. In both cases, the transformations are
grouped to so-called rounds. There are three different
types of rounds, namely, the initial round, the normal
round, and the final round. AES is a symmetric block
cipher. It acts as a resistance against all known attacks. In
a wide range of platforms, the AES has speed and code
compactness. The key unit is used to store keys and to
calculate the key expansion function. Due to the fact that
the AES is standardized for 128, 192, and 256-bit keys,
the interface between the key unit and the data unit is
designed for the key expansion for several different key
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sizes can be implemented on the same chip. It is the
preferred algorithm for implementations of cryptographic
protocols.

Fig 7. Internal operations of Advanced Encryption Standard.
3. Triple Data Encryption Standard

The original DES cipher's key size of 56 bits was
generally sufficient when that algorithm was designed,
but the availability of increasing computational power
made brute-force attacks feasible. Triple DES provides a
relatively simple method of increasing the key size of
DES to protect against such attacks, without the need to
design a completely new block cipher algorithm. Triple
DES uses a "key bundle" which comprises three DES
keys, K1, K2 and K3, each of 56 bits (excluding parity
bits). Figure 8 depicts the internal operation of Triple
Data Encryption Standard in which it has three keys (56 x
3 = 168 bits) for encryption and decryption.

Fig 8 Internal operation of Triple Data Encryption Standard.
The encryption algorithm is: Cipher text =
EK3(DK2(EK1(plaintext))) i.e., DES encrypts with K1, DES
decrypt with K2, then DES encrypt with K3.Decryption is
the reverse:

Plaintext = DK1(EK2(DK3(cipher text))) i.e., decrypt with
K3, encrypt with K2, and then decrypt with K1.
4. Elliptic Curve Cryptography

Elliptic curve cryptography (ECC) is an
approach to public-key cryptography based on the
algebraic structure of elliptic curves over finite fields.
Popular asymmetric cryptosystems like RSA are known
to be very costly concerning calculation time and memory
needs for larger key sizes. To solve this problem, elliptic
curve cryptosystems based can be used. An elliptic curve
cryptosystem is an asymmetric cryptosystem relying on
the hardness of the discrete logarithm problem in elliptic
curve groups With ECIES encryption, it is possible to
encrypt data with a 160-bit key as secure as with RSA
using a 1024-bit key. So ECIES encryption is the better
choice compared to RSA when calculation time and
available memory are restricted, e.g. when using
cryptosystems on smartcards

Fig 9 Internal operation of Elliptic Curve Cryptography
The Elliptic Curve Integrated Encryption Scheme
(ECIES), also known as Elliptic Curve Augmented
Encryption Scheme or simply the Elliptic Curve
Encryption Scheme. Figure 9 depicts the internal
operations of Elliptic Curve Cryptography in which two
parity cells are added and compared and if it is accepted
then no error is found if it is not accepted then the error is
detected by the Error Correction Unit.

V. CONCLUSION
The current version of ES-MPICH2 is focused on
securing the transmission control protocol (TCP)
connections on the internet, because we addressed the
data confidentiality issues on geographically distributed
cluster computing systems. In addition to the MPI library,
other parallel programming libraries will be investigated.
Candidate libraries include the shared memory access
library and the remote direct memory access library. We
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plan to provide confidentiality services in the SHMEM
and RDMA [1] libraries. A third promising direction for
further work is to integrate encryption and decryption
algorithms in other communication channels like
SHMEM and InfiniBand in MPICH2 because an
increasing number of commodity clusters are built using
standalone and advanced networks such as InfiniBand
and Myrinet. So far, our study has been restricted to a
fairly small platform which consists of 8 nodes. In the
future, we plan to use larger clusters to study various
aspects of our designs regarding scalability. Another
direction we are currently pursuing is to provide support
for MPI-2 functionalities such as one-sided
communication using RDMA and atomic operations in
InfiniBand. We are also working on how to support
efficient collective communication on top of InfiniBand
[1].
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